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Abstract

The number of mass shootings in the United States has increased in the recent decades.

Understanding the future risk of the mass shootings is critical for designing strategies to

mitigate the risk of mass shootings, and part of understanding the future risk is to fore-

cast the frequency or number of mass shootings in the future. Despite the increasing

trend in mass shootings, they thankfully remain rare events with fewer than 10 mass

shootings occurring in a single year. Limited historical data with substantial annual vari-

ability poses challenges to accurately forecasting rare events such as the number of

mass shootings in the United States. Different forecasting models can be deployed to

tackle this challenge. This article compares three forecasting models, a change-point

model, a time series model, and a hybrid of a time series model with an artificial neural

network model. Each model is applied to forecast the frequency of mass shootings.

Comparing among results from these models reveals advantages and disadvantages of

each model when forecasting rare events such as mass shootings. The hybrid ARIMA-

ANN model can be tuned to follow variation in the data, but the pattern of the variation

may not continue into the future. The mean of the change-point model and the ARIMA

model exhibit much more less annual variation and are not influenced as much by the

inclusion of a single data point. The insights generated from the comparison are benefi-

cial for selecting the best model and accurately estimating the risk of mass shootings in

the United States.

1 Introduction

Public mass shootings, in which 4 or more individuals are killed from a shooting in a public

setting, are a major social problem in the United States and generate a significant amount

of media attention and debate over the best strategies to reduce their risk. The United States

accounts for approximately one-third of all public mass shootings in the world [1].

Research in mass shootings finds that the rate of mass shootings in the United States has
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increased in the 21st century [2–4] although these conclusions depend in part on the defini-

tion of mass shootings [5]. Equally as disturbing, the lethality of mass shootings has

increased in the 21st century [6, 7]. Much of the existing literature on modeling and fore-

casting the trend in mass shootings focuses on associating different factors such as poverty,

gun laws, gun ownership, and population with the prevalence of mass shootings [4, 8–11].

Historical data on mass shootings have significant variability and with relatively few data

points. This poses challenges to accurately forecast the number of mass shootings. Among

the existing work, little research has analyzed and compared among different models that

can potentially forecast the number of mass shootings in the United States. Therefore,

developing sophisticated models that can capture stochastic characteristics of rare events

with limited data is needed.

Being able to accurately model and forecast the number of mass shootings in the United

States should help us understand and analyze the risk of these events and should lead to

more informed discussions of how best to mitigate the risk. Mass shootings are rare events,

and accurately forecasting rare events is problematic and statistically challenging [12].

According to the Violence Project [13], the maximum number of mass shootings that has

occurred in a single year is 8 with most years since 2000 seeing 2-6 mass shootings. Models

that explicitly incorporate uncertainty may be the best approach to forecasting rare events

[14, 15]. Bayesian models incorporate uncertainty in both model parameters and future fore-

casting results [16, 17]. Poisson models can also be appropriate for modeling rare events

because the rare events can be considered a recurrent process [18], and the Poisson model

does not require normally distributed errors [19]. Attempting to model rare events can also

lead to overfitting due to a limited set of data for training the model. Potential solutions to

overfitting are penalized regression (e.g., Ridge regression, Lasso regression) [20, 21] and

bootstrapping [22, 23].

Several models could be used to forecast the frequency of mass shootings in the United

States, but the rare-event nature and annual variability in the number of mass shootings cre-

ate obstacles to generating an accurate forecast and determining which model is most appro-

priate. This article compares three models to forecast the annual number of mass shootings,

a Bayesian change-point model, the autoregressive integrated moving average (ARIMA)

model, and a hybrid of an ARIMA and neural network model. The change-point models

time series data through a non-homogeneous Poisson process view. The ARIMA model is a

classic time series model which is commonly used for time series modeling. The Hybrid

model combines the deep learning model’s advantage into time series modeling. All these

three models model time series based on different stand points and use different types of

data. Three models were chosen The change-point model fits time series data to a non-

homogeneous Poisson process, and mass shootings largely seem to be independent events

over time that obey the assumptions of a Poisson process. The ARIMA model is chosen

because it is a classic time series model used very frequently to model annual data over sev-

eral years in which the data exhibits autocorrelation. The hybrid model is a relatively new

model that combines deep learning with ARIMA to. All these three models model time series

based on different stand points and use different types of data. We compare the fitting and

forecasting performance of these models. The comparison helps us learn the advantages and

disadvantages of each model to forecast the number of mass shootings. Comparing among

the results reveals more general insights into the usefulness of each model for forecasting

rare events.

A change-point model detects times when the stochastic process or time series changes.

The change-point model often models recurrent events in which the rate of occurrence

changes with time [24–28]. Probabilistic methods of change-point models typically follow a
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Bayesian approach [29, 30] and have been used to measure ozone levels in Mexico City [28],

tuberculosis in New York City [24], the risk of teenage drivers [31–34], and the trend in mass

shootings [35].

ARIMA is one of the most widely used forecasting models for time series [36–39]. The

ARIMA model can express different time series through its flexible parameters [40] and can

tackle non-stationary time series [41]. ARIMA models have been applied to predict crime in

many countries, including the Philippines [42], Australia [43], China [44], and the United

Kingdom [45]. A bivariate ARIMA model is used to investigate the relationship between crime

and arrests in Oklahoma City [46], and an ARIMA model studies the impact of COVID-19

stay-at-home orders on the gun violence in Buffalo, New York [47].

ARIMA models may not be ideal for forecasting rare events in part because the ARIMA

equation is a linear equation, but some examples exist in the literature of using ARIMA to fore-

cast rare events. An empirically based smoothing technique combined with ARIMA is used to

forecast the occurrence of rare events (strong earthquakes in Parkfield, California) [48]. The

ARIMA is applied to forecast drought in the Jordan River basin where 0-2 severe droughts

occur and 4 moderate droughts occur [49] apply. An resampling strategy is proposed to fore-

cast rare events with an ARIMA mdoel when the training data is imbalanced, which can be a

feature of rare events [50]. An autoregressive model combined with a change-point detection

model is used to detect outliers in a time series [51].

The third type of model used in this paper to forecast mass shootings is a hybrid of

ARIMA and an artificial neural network (ANN). ANN is a popular machine learning tool

because of its ability to model nonlinearity [52, 53] and learn from data [54, 55]. Neural net-

works have been applied to forecast time series of rare events [56–58]. The hybrid ARI-

MA-ANN model is proposed for time series forecasting [59]. The hybrid ARIMA-ANN

model frequently has a better prediction accuracy than either the pure ARIMA model or

ANN model [60–63]. Some of the literature finds that the hybrid model performs better than

the ARIMA model for time series forecasting based on limited historical data [59, 60, 64].

The ARIMA model considers the linear combinations of inputs for modeling a time series.

However, the nonlinear combinations of inputs may also be needed for the time series data.

The ANN model is a widely used model to capture nonlinearities in data [65]. The unique

advantage of using the hybrid AIMRA-ANN is to model the time series data via a linear part

and a nonlinear part.

This article fits the time series of mass shootings in the United States as recorded by the

Violence Project [13] from 1966-2020 to each of the three models: a change-point model

with a time-dependent rate function, the ARIMA model, and the ARIMA-ANN hybrid

model. Such a comparison requires several unique approaches. Since comparing among sta-

tistical models often separates data into training and testing sets, the comparison among

these models separates the historical data on mass shootings into different training and test-

ing sets while preserving the time series of the data. The hybrid model is relatively new, and

we compare its ability to fit historical data and forecast the future with these other models for

rare events. The results of this comparison lead to a discussion of the advantages and disad-

vantages of using each type of model to forecast the annual number of mass shootings. This

discussion may be broadly applicable to other types of applications. Comparing these models

contributes significantly to our understanding of the risk of mass shootings and forecasting

rare events.

Section 2 introduces each of the forecasting models with an explicit focus on the hybrid

ARIMA-ANN model because it is less well known. Section 3 compares among the different

models, and we examine how choosing a different number of nodes in the hybrid model sub-

stantially impacts the performance of this model. We also study the effect of including the
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number of mass shootings in the most recent year 2020 on the forecast of each model. We con-

clude in Section 4 with some insights from this study.

2 Forecasting models

This section introduces the three models that are used to forecast mass shootings: the Bayesian

change-point model, the ARIMA model, and the hybrid ARIMA-ANN model.

2.1 Change-point model

A non-homogenous Poisson process (NHPP) refers to a Poisson process where the arrival rate

changes over time. A change-point model can use a time-dependent rate function to model a

NHPP. Commonly used time-dependent rate functions are the power law process, the Musa-

Okumoto process, the Goel–Okumoto process, the generalized Goel-Okumoto process, and

the Weibull-geometric process (WG) [66–70]. The change-point model identifies one or more

points in time when the parameters of the rate function changes. Bayesian methods can be

used to detect change points or more accurately the posterior distribution for these change

points [30]. After the change-point model is fit to the historical data, we can generate a proba-

bilistic forecast of future events by simulating the NHPP by sampling parameters from the pos-

terior distribution.

Since the Violence Project data for mass shootings contain the date of each mass shooting,

the change-point model with the time-dependent rate function can be fit to the historical data

on mass shootings by modeling the time between each mass shooting. Since mass shootings

have become more frequent over time, a NHPP is a reasonable model for this event. Lei et al.

[35] fit the different time-dependent rate functions to the mass shootings for zero, one, and

two change points. They find that the WG rate function performs the best according to three

performance metrics: deviance information criterion, marginal likelihood, and residual sum of

squares. Thus, we use the change-point model with the WG rate function in this article to

model and forecast the annual number of mass shootings. The WG rate function is:

lðtÞ ¼
a

b

t
b

� �a� 1

1 � re�
t
bð Þ

a ð1Þ

where λ(t) is the rate at time t, and α> 0, β> 0, and ρ 2 (0, 1) are parameters of the rate

functions.

As explained in [35], this rate function is used to derive the likelihood function for the

observed mass shootings data. We assume uniform prior distributions for the parameters in

the rate function and the change points. The software package Stan which is run via the R
library rstan applies a Markov Chain Monte Carlo sampling technique to generate a poste-

rior distribution for the rate function parameters and the change points.

2.2 ARIMA model

The ARIMA model assumes that future observations are linearly dependent on past observa-

tions and random errors. The parameters of the non-seasonal ARIMA model are p, d, and q.

The parameter p is the order of autoregression. The parameter d is the differencing number.

The parameter q is the order of the moving average model [40, 71]. The ARIMA model can be

expressed as:

�ðBÞrdðyt � mÞ ¼ yðBÞεt ð2Þ
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where yt is the observation at time t, εt is the random error at time t, μ is the mean value, and B
is backward shift operator. The backward shift operator causes the observation that it multi-

plies to be shifted backwards in time by one period. In our case, Byt = yt−1. The functions

�ðBÞ ¼ 1 �
Pp

i¼1
φiB

i, yðBÞ ¼ 1 �
Pq

j¼1
yjBj, andrd = (1 − B)d. The parameters φ1 . . . φp are

the autoregressive parameters to be estimated. The parameters θ1. . .θq are the moving average

parameters to be estimated. The random errors εt are independently and identically distrib-

uted with zero mean and a constant variance.

The first step of fitting the ARIMA model to data is choosing the values for p, d, and q. We

use the Akaike Information Criterion (AIC) to select the best order of the ARIMA model. An

approximate calculation of the AIC is based on the sum of squared residuals (RSS) [61]:

AIC ¼ k log
2pRSS
n

� �

þ 1

� �

þ 2ðpþ qÞ ð3Þ

where k is the number of observations in the ARIMA model. Given the order of the ARIMA

model, the parameters of model can be estimated by the maximum likelihood estimation [72,

73].

Python software packages pmdarima.arima use auto.arima function to estimate

parameters in the ARIMA model [74]. After setting the maximum values for p and q, the

auto_arima function will test all different value combinations of p and q and select the best

one with the smallest AIC. The auto_arima package uses the Augmented Dickey-Fuller test

to determine if the time series is stationary [75]. If the time series is not stationary,

auto_arima will provide a suitable value of d.

2.3 Hybrid ARIMA-ANN model

The ARIMA model considers the linear combinations of inputs for modeling a time series.

However, the nonlinear combinations of inputs may also be needed for the time series data.

The ANN model is a widely used model to capture nonlinearities in data [65]. The unique

advantage of using the ANN is there are no prior assumptions about the form of the model.

The form of the ANN model depends on the data. The hybrid AIMRA-ANN models the time

series data via a linear part and a nonlinear part. The model can be expressed as:

yt ¼ Lt þ Nt ð4Þ

where Lt is the linear model and Nt is the nonlinear model at time t. The linear model Lt is esti-

mated by the ARIMA model and denoted as L̂t .
The residual at time t, et, is obtained by:

et ¼ yt � L̂t ð5Þ

The analysis of residuals indicates whether the ARIMA model fully captures the time series.

The nonlinear component of the residuals can be modeled by using the ANN model. The func-

tion h is generated by the ANN model as a function of the preceding n residuals before time t:

et ¼ hðet� 1; et� 2; . . . ; et� nÞ þ εt ð6Þ

where et is the current residual, et−1, et−2, . . ., et−n are the n most recent residuals before time t.
The model N̂t ¼ hðet� 1; et� 2; . . . ; et� nÞ is the estimate of et. Residuals should be normalized and

mapped to the range [0, 1] before being input in the ANN model.

The architecture of the ANN model is very flexible [76]. Three types of layers exist in the

ANN model. The input layer consists of different inputs. The output layer exports the outputs
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of the model. The hidden layer connects the input layer and output layer. Unlike the input and

the output layer, the hidden layer can have more than one layer. The most commonly applied

ANN structure is the single hidden layer and back propagation ANN [77]. In this research, the

ANN model estimates the current residual et based on the previous t − 1 residuals. The input

layer has multiple input nodes. The output layer only has one output node. Multiple hidden

nodes exist in the hidden layer. The general ANN architecture considered in this paper is

shown in Fig 1.

The activation functions embedded in the ANN model allow the model to capture nonline-

arity. The activation functions used for each node define the output of that node through some

inputs. Many different activation functions can be used in the ANN model, such as the sig-

moid (Sig) function, the hyperbolic tangent (Tanh) function, the SoftPlus function, and the

binary step function [78–81]. The Sig and Tanh functions are used as the activation functions

for the hidden layer and the output layer, respectively, in this article. The form of these two

activation functions are:

SigðxÞ ¼
1

1þ expð� xÞ
ð7Þ

TanhðxÞ ¼
1 � expð� 2xÞ
1þ expð� 2xÞ

ð8Þ

The mathematical relations between the three layers in the Fig 1 can be described by the

activation functions. There are I data points to train the ANN model for the nonlinear part of

the annual count of mass shootings. For data point i (i 2 I), xðiÞ ¼ ðeðiÞt� 1; e
ðiÞ
t� 2; . . . ; eðiÞt� nÞ is the

output of the input layer where n is the number of nodes in the the input layer, or more simply,

the number of inputs. The corresponding output of the hidden layer is

aðiÞ ¼ ðaðiÞ1 ; a
ðiÞ
2 ; . . . ; aðiÞm Þ, where m is the number of nodes in the hidden layer. The relationship

Fig 1. Single hidden layer neural network.

https://doi.org/10.1371/journal.pone.0287427.g001
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between the input layer and the hidden layer is:

aðiÞ ¼ TanhðW½1�xðiÞ þ b½1�Þ ð9Þ

where W[1] and b[1] are the parameters for the hidden layer. Similarly, the relationship between

the hidden layer and the output layer is:

N̂t
ðiÞ ¼ SigðW½2�aðiÞ þ b½2�Þ ð10Þ

where W[2] and b[2] are the parameters for the output layer. The cost function used for back

propagation to update all parameters should be a measurement of accuracy, such as the mean

squared error J [82]:

J ¼
1

I

XI

i¼1

eðiÞt � N̂t
ðiÞÞ

2
ð11Þ

�

where eðiÞt is true residual at time time t for data point i as obtained from the ARIMA model.

A potential problem raised with the ANN model is overfitting. Overfitting often happens

when the model has a complex structure and many parameters. Regulation methods can

reduce the effect of the problem. The regulation term can be added to the cost function to pre-

vent forming a large neural network. The regulation term penalizes large weights and results

in fitting a less complex model. Another way to avoid overfitting is to reduce some nodes of

the hidden layer [83]. This dropout method frequently performs better than adding a regula-

tion term for complex neural networks, but adding a regulation term is easier to apply. Since

the ANN model in this research only has a single hidden layer, it is not too complex. An L2

regulation term is added to the cost function:

Jregularized ¼ J þ L2

¼
1

I

XI

i¼1

�

eðiÞt � N̂t
ðiÞ

�2

þ
l

2
W½1�⊺W½1� þW½2�⊺W½2�

� �
ð12Þ

Another problem that needs to be solved is selecting the number of input nodes n and the

number of hidden nodes m shown in Fig 1. It is time consuming to try every different combi-

nation of n and m. Different methods have been proposed to find the optimal architecture of

the ANN model [84–86]. One architecture selection strategy suggests a sequential network

construction (SNC) [87]. The SNC for the ANN model is depicted in Fig 2. This process can

be summarized in two steps. The first step is to select the number of hidden nodes, and the sec-

ond step is to select choosing the number of input nodes given the hidden nodes.

The prediction risk represents the expected prediction performance of the model. By com-

paring the prediction risk of different models, we can select the model with the best generaliza-

tion ability. The general definition of prediction risk is the expected mean squared error for

the test data set. In many cases, calculating the expected value of the mean squared error is

challenging because of a limited test set. Hence, we need to estimate the prediction risk. Other

methods to estimate predication risk include cross validation and algebraic estimation [88–

91]. We let the ANN model train over all of the data and calculate the prediction risk by the

algebraic estimation. The estimation based on all available data is:

P̂ ¼ J∗ 1þ
2Q
I

� �

ð13Þ

where P̂ is the estimated prediction risk, J is the mean squared error of the ANN model trained
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over all available data, and Q is the number of weights used in the ANN model. Based on the

single hidden layer neural network shown in Fig 1, Q = n ×m + m.

3 Comparing among different forecasting models

The data of mass shootings are available from different sources. The commonly used mass

shootings data sources are New York City Police Department (NYCPD) [92, 93], FBI [94],

Mother Jones [95], Gun Violence Archive [96], and Violence Project [13]. One of the model

types used to estimate the number of mass shootings in the United States—change-point mod-

els—assumes that mass shootings is a non-homogeneous Poisson process (NHPP). These

models require the time between each incident in a unit of time as small as possible. The Vio-

lence Project databases provide the day of each shooting. The Violence Project also provides a

long observation period, from 1966-2019. Given these reasons, this research uses the mass

shootings data from the Violence Project [13].

Table 2 in the Appendix shows the annual count of mass shootings recorded by the Vio-

lence Project from 1966 to 2019. The first mass shooting recorded by the Violence Project

took place on August 1, 1966, which corresponds to the starting time in the change-point

model t1 = 0. The ARIMA and hybrid ARIMA-ANN models use the annual number of shoot-

ings rather than the number of days between each shooting.

Fig 2. The architecture selection of the ANN model.

https://doi.org/10.1371/journal.pone.0287427.g002
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The Violence Project data on mass shootings covers the years 1966-2019. In order to com-

pare the forecast accuracy among the three models, it is necessary to divide the data into a

training set and a testing set. Since the data is a time series, randomly dividing the data into a

training and testing set is incorrect. Instead, the training set is established as the annual num-

ber of mass shootings from 1966 to year T and the testing set is the annual number of mass

shootings from year T + 1 to 2019. The final year T of the training set varies during this analy-

sis, and the proportion of years in the testing set ranges from 10% to 30% of the total number

of years. Our comparison among the three models analyzes the root mean squared error

(RMSE) and mean absolute percentage error(MAPE) on the training set and on the testing set

data and also explores how the models perform when forecasting the annual number of mass

shootings in the future.

3.1 Comparison of model performance with different size training sets

The last year of the training set T changes from 2003 to 2014. For each training set and its cor-

responding test set, we fit three different types of forecasting models, the change-point model

with the WG rate function, the ARIMA model, and the hybrid ARIMA-ANN model. The

Python package pmdarima.arima is used to select p, q, and d for the ARIMA model for

each training set. We limit the domain of p and q to be between 0 and 5 and the domain of d to

be between 1 and 3. The auto_arima, which is imported into the Python package, selects

p = 0, q = 1, and d = 1 for all of the training sets. Given the ranges of these parameters, the

ARIMA(0-1-1) model results in the best fit for the data.

For the hybrid model, ARIMA(0-1-1) is used to model the linear part of the hybrid ARI-

MA-ANN model. The inputs for the ANN model are the residuals from the ARIMA(0-1-1)

model. Each training set may provide a different architecture for the ANN model. As

shown in Fig 2, the number of hidden nodes is selected before the number of input nodes.

The maximum number of nodes in the hidden layer is set to 10 and the ANN model is

trained with a different constraint on the maximum number of input nodes, 3, 5, 7, or 10.

For each training set, the best architecture of the ANN model is based on the prediction

risk calculated by Eq 13. The first step trains the fully connected ANN model with all the

available input nodes (n = 3, 5, 7, or 10) and varies the number of hidden nodes m from 0 to

10. The number of hidden nodes m is selected with the smallest prediction risk when the

number of input nodes n is fixed at 3, 5, 7 or 10. Then we fix the number of hidden nodes m
at selected value. The ANN model is then retrained with the number of inputs ranging

between 0 and the maximum number of input nodes (3, 5, 7 or 10). The number of input

nodes n is chosen for the ANN model with the smallest prediction risk. This architecture

selection process is repeated for each training set with the years of the training ranging

from 1966-2003 to 1966-2014. The architecture selection results for different training sets

when we consider the different maximum numbers of input nodes presented in the Appen-

dix, Tables 4–7.

RMSE and MAPE are used to compare the different models’ performances over the differ-

ent sizes of the training set [97]. Fig 3a displays the training RMSE for each model with the var-

ious size of training set data. The RMSE and MAPE for the change-point model with the WG

rate function are based on the mean annual counts of the model. The hybrid ARIMA-ANN

model always has the smallest RMSE and MAPE over the different training sets. The change-

point model with the WG rate function and the ARIMA model have very similar performance

for the training set data, and the RMSE and MAPE decreases for both models as the training

set gets larger except for the largest training set (years 1966-2014). The maximum number of

input nodes affects the training RMSE and training MAPE for the hybrid ARIMA-ANN

PLOS ONE Comparing different models to forecast the number of mass shootings in the United States

PLOS ONE | https://doi.org/10.1371/journal.pone.0287427 June 26, 2023 9 / 23

https://doi.org/10.1371/journal.pone.0287427


model. The ANN model with a largest maximum number of input nodes (10) has the smallest

training RMSE and training MAPE.

Fig 4 depicts the test RMSE and MAPE for each model with the different training sets. The

test RMSEs and MAPEs for the change-point model, the ARIMA model, and the ARI-

MA-ANN model with a maximum of three input nodes generally increase as the size of the

testing set decreases. The other hybrid ARIMA-ANN models (maximum 5, 7, and 10 input

nodes) may have overfitting issues. Although these models have the smallest training RMSE,

they frequently have the largest test RMSEs and MAPEs. The hybrid model with a maximum

of 5 input nodes looks to perform the best out of all the models when the testing begins with

years 2014 or 2015, and the test RMSE and test MAPE remain relatively constant for the differ-

ent testing sets.

The training RMSE, MAPE and test RMSE, MAPE provide exact errors on how the differ-

ent models fit the mass shootings data from the Violence Project database. Comparing the

Fig 3. The training RMSE and MAPE of different models over different training sets (a: change-point model with WG

rate function, b: ARIMA model, c: hybrid ARIMA-ANN with maximum 3 input nodes, d: hybrid with maximum 5

input nodes, e: hybrid with maximum 7 input nodes, f: hybrid with maximum 10 input nodes).

https://doi.org/10.1371/journal.pone.0287427.g003
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models’ outputs with the annual number of mass shootings enables us to understand the

results more intuitively. Fig 5 depicts some plots showing these comparisons. The plot for the

change-point model depicts the mean annual counts from the model. The change-point model

and the ARIMA model provide very similar estimates and capture the increasing trend in the

number of mass shootings. While the ARIMA model generally suggests almost a linear trend

over time with little variation, the hybrid ARIMA-ANN model follows the variation of the

annual counts of mass shootings quite well for the training set data. The hybrid model is trying

to capture a pattern in the variation from year to year. Although the testing sets also depict

substantial annual variation, there is not really a pattern. The hybrid models, especially those

models with a greater maximum number of input nodes, correctly forecast substantial varia-

tion in the annual number of mass shooting, but they generally fail to forecast accurately if a

year will have fewer (i.e., 3 or 4) mass shootings or more (i.e., 7 or 8) mass shootings.

Fig 4. The test RMSE and MAPE of different models over different training sets (a: change-point model with WG rate

function, b: ARIMA model, c: hybrid ARIMA-ANN with maximum 3 input nodes, d: hybrid with maximum 5 input

nodes, e: hybrid with maximum 7 input nodes, f: hybrid with maximum 10 input nodes).

https://doi.org/10.1371/journal.pone.0287427.g004

PLOS ONE Comparing different models to forecast the number of mass shootings in the United States

PLOS ONE | https://doi.org/10.1371/journal.pone.0287427 June 26, 2023 11 / 23

https://doi.org/10.1371/journal.pone.0287427.g004
https://doi.org/10.1371/journal.pone.0287427


According to the above comparison, the hybrid ARIMA-ANN models with a maximum of

7 and 10 input nodes may suffer from overfitting. The large test errors(RMSE and MAPE) for

these two hybrid models indicate that the fluctuation pattern of annual shootings does not

continue in the same way. The number of mass shootings in a year exhibits a lot of

Fig 5. Observed and estimated annual counts from different models with using different training sets (obs: real observations from the Violence Project

database, a: change-point model with WG rate function, b: ARIMA model, c: hybrid ARIMA-ANN with maximum 3 input nodes, d: hybrid with

maximum 5 input nodes, e: hybrid with maximum 7 input nodes, f: hybrid with maximum 10 input nodes).

https://doi.org/10.1371/journal.pone.0287427.g005
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randomness, which is difficult if not impossible to forecast accurately. The hybrid ARI-

MA-ANN model with a maximum of 5 input nodes generates good RMSE and MAPE for

both the training and testing sets, and perhaps this model appropriately balances between

reflecting the trend in mass shootings and capturing some of the variation. Another way to

forecast the variation in mass shootings is with a prediction interval for the ARIMA model or

a credible interval of the change-point model.

3.2 Forecasting results for the future

In addition to using testing sets comprised of historical data to compare the models results,

we also analyze how the models use the entire set of data to forecast the number of mass

shootings 5 years into the future. Each model is trained on the data from 1966 to 2019 in

order to forecast mass shootings from 2020 to 2024. The Violence Project recently completed

its data for mass shooting in 2020, a year in which only one mass shooting occurred. Each

model is also trained on the data from 1966 to 2020 in order to forecast mass shootings from

2021 to 2025. Comparing the forecast of 2020-2024 and the forecast of 2021-2025 can pro-

vide insight into the sensitivity of the models to a recent change (1 mass shooting in 2020).

Fig 6(a) shows the forecasted number of mass shootings in each year from 2020 to 2024

based on the historical data from 1966 to 2019. The change-point model, the ARIMA model,

and the hybrid models with a maximum of 3 or 5 input nodes predict a relatively constant

number of mass shootings (between 6 and 7 shootings). The hybrid models with a maximum

of 7 or 10 input nodes forecast much more variation with approximately 8 mass shootings in

2021 but only 5 in 2024. The two models’ forecasts diverge in 2023 as their forecasts differ by

approximately 3 shootings.

As depicted in Fig 6(b), the hybrid models with a maximum of 7 and 10 input nodes are

very sensitive to the additional data point of one mass shooting in 2020. These two models

have similar forecasts to the other four models in 2021, but the two models forecast a relatively

small number of mass shootings (approximately 3 shootings for the 7-input-node model and 2

shootings for the 10-input-node model) in 2022. The other four models predict between 4.5

and 6.5 mass shootings in 2022. All six models forecast a relatively similar number of mass

shootings (approximately 6±1 shootings) for the years 2023-2025. Each of the six models that

included the data point from 2020 forecasts fewer shootings than the same model if the data

point from 2020 is not included. A sudden and recent decrease in the number of mass shoot-

ings impacts all of the models’ forecasts although it impacts the hybrid models with a large

number of inputs the most. Because the change point model and the ARIMA model capture

the overall trend of mass shootings. Since the ANN part of the hybrid model is used to model

the residual of the ARIMA model. The Hybrid model is more sensitive to the data variation

(recent change in data).

The prediction interval of a forecasting model provides a range in which the future observa-

tion will fall with a certain probability. The wider prediction interval means more uncertainty

exists in the forecast. We compare the prediction intervals of the forecasted number of mass

shootings in 2020 given the data from 1966-2019. We also compare the prediction intervals for

2021 when the data of 2020 is included in training set. Table 1 depicts the 95% prediction

intervals estimated by different models in 2020 and 2021.

The ARIMA-ANN model with 3 input nodes provides the narrowest prediction interval for

the forecasts. The width of prediction interval for the change-point model is the widest, which

is likely due to the highly skewed posterior distribution in the change-point model. Including

the single mass shooting in 2020 changes the models’ prediction intervals except for that of the

change-point model. The change in 2020 brings more uncertainty with the forecasts of the
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Fig 6. Forecasting of the annual counts of mass shootings (a: change-point model with WG rate function, b: ARIMA

model, c: hybrid ARIMA-ANN with maximum 3 input nodes, d: hybrid with maximum 5 input nodes, e: hybrid with

maximum 7 input nodes, f: hybrid with maximum 10 input nodes).

https://doi.org/10.1371/journal.pone.0287427.g006

Table 1. Prediction intervals in 2020 and 2021.

Model 2020 2021

Change-point model(WG) [2, 12] [2, 12]

ARIMA [3.33, 8.66] [2.80, 8.68]

ARIMA-ANN (max 3 input nodes) [3.74, 8.22] [1.98, 7.20]

ARIMA-ANN (max 5 input nodes) [4.21, 9.15] [1.66, 7.08]

ARIMA-ANN (max 7 input nodes) [1.71, 9.19] [1.96, 8.28]

ARIMA-ANN (max 10 input nodes) [2.96, 9.46] [1.73, 8.37]

https://doi.org/10.1371/journal.pone.0287427.t001
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ARIMA model and the ARIMA-ANN models with 3 or 5 input nodes. The change in 2020

decreases the widths of the prediction intervals for the ARIMA-ANN models with 7 or 10

input nodes. Including another data point in these relatively wide prediction intervals

decreases the uncertainty in these two models’ forecasts.

4 Conclusion

This paper compares the performance of different models to forecast the annual number

of mass shootings. Three types of models are compared, the change-point model with a

WG rate function, the time series ARIMA model, and the hyrbid ARIMA-ANN model.

The hybrid model has four different variants, depending on the maximum number of

input nodes. The last year of the training set is varied in order to analyze the performance

of the models on slightly different testing sets while keeping the time series elements of

the data intact. The models’ forecasts for the first half of the decade of the 2020s are com-

pared especially as it relates to whether or not the number of mass shooting in 2020 is

included.

The main limitation of this article is the comparison among these models to a single data

set, the historical data on mass shootings. Applying these types of forecasting models to multi-

ple time series, especially time series data on other rare events, would enable us to make stron-

ger conclusions about the benefits and drawbacks of each modeling approach. Other time

series data with similar rates of frequencies could be severe natural disasters in the United

States, armed military conflicts, and fatal aviation accidents. Another potential limitation is

that several factors may contribute to the frequency of mass shootings such as population, gun

legislation, and the prior occurrence of mass shootings. Although including some of these fac-

tors may improve the forecast of mass shootings, such a modeling approach would also require

the ability to forecast the prevalence of those factors into the future.

Since this paper only examines the performance of these models on one data set, making

sweeping conclusions about when each type of model should be used may not be wise. How-

ever, the performance and forecasting results can provide more general insights into the

advantages and disadvantages of these models and specific insights into the annual number of

mass shootings. The hybrid ARIMA-ANN model, especially if the ANN model has a large

number of input nodes, fits the training set time series the best. The hybrid model reflects the

substantial variation in the historical data of annual mass shootings. Conversely, the ARIMA

model depicts a relatively stable trend over time and its RMSE for the training set is the largest

of all of the models. The mean of the change-point model depicts a very consistent trend over

time. As a probabilistic model, the change-point model’s distribution also reflects the large var-

iation in each year.

Although the hybrid models with a maximum of 7 and 10 input nodes have the smallest

RMSE for the training set, these two models frequently have the largest RMSE for the testing

set. This likely suggests that the hybrid model, especially with a large number of input nodes,

can suffer from overfitting. These models try to capture the variation and seem to look for a

pattern in the variation, but any pattern that may exist in the variation of the training set

does not necessarily hold true in the testing set. The hybrid model often forecasts a large

number of mass shootings (e.g., 7 or 8) in one year followed by a small number (e.g., 3 or 4)

in the following year. The experiments reveal that the RMSEs for the testing set for the

change-point model, the ARIMA model, and the hybrid model with a maximum of 3 input

nodes increase as fewer data points are included in the training set, or equivalently as more

data points are included in the testing set. The RMSEs for the testing set for the other hybrid

models do not show a trend but vary a lot. The hybrid models with a maximum of 5 and 7
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input nodes have the smallest test RMSE of all the models when the training set has the larg-

est number of data points. This result may not be generalizable, however, especially because

the hybrid model with a maximum of 10 input nodes has the largest test RMSE for that same

training set.

This article is unique in that it compares different forecasting models to predict the num-

ber of mass shootings in the future. Comparing different forecasting models sheds insight

into the advantages and disadvantages of each model. The hybrid ARIMA-ANN model can

be tuned to follow variation in the data, but the pattern of the variation may not continue

into the future. The mean of the change-point model and the ARIMA model exhibit much

more less annual variation and are not influenced as much by the inclusion of a single data

point.

5 Appendix

Tables 2 and 3 show the annual count data and the time data of mass shootings generated

from the Violence Project database.

Tables 4–7 present the architecture selection results of the ANN model with different maxi-

mum number of input nodes for the different training sets.

Table 2. Year count data of mass shootings from the Violence Project.

Year Number of mass shootings Year Number of mass shootings

1966 2 1993 6

1967 1 1994 2

1968 1 1995 3

1969 1 1996 2

1970 1 1997 4

1971 0 1998 4

1972 2 1999 8

1973 1 2000 3

1974 0 2001 4

1975 1 2002 1

1976 1 2003 4

1977 3 2004 3

1978 1 2005 4

1979 0 2006 4

1980 3 2007 4

1981 2 2008 5

1982 3 2009 5

1983 3 2010 5

1984 4 2011 4

1985 1 2012 6

1986 1 2013 5

1987 1 2014 3

1988 3 2015 6

1989 2 2016 5

1990 1 2017 7

1991 5 2018 8

1992 4 2019 8

https://doi.org/10.1371/journal.pone.0287427.t002
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Table 3. Occurring time data of mass shootings from the Violence Project.

ith event ti(days) ith event ti(days) ith event ti(days) ith event ti(days) ith event ti(days)

1 0 36 8081 71 11944 106 15163 141 17988

2 101 37 8201 72 11944 107 15197 142 18006

3 447 38 8438 73 11987 108 15294 143 18006

4 595 39 8717 74 12043 109 15361 144 18089

5 979 40 9194 75 12089 110 15573 145 18108

6 1512 41 9200 76 12136 111 15577 146 18201

7 2128 42 9215 77 12194 112 15785 147 18226

8 2150 43 9223 78 12279 113 15789 148 18302

9 2351 44 9228 79 12317 114 15813 149 18410

10 3136 45 9354 80 12555 115 15942 150 18440

11 3631 46 9400 81 12573 116 16005 151 18486

12 3848 47 9564 82 12599 117 16062 152 18559

13 4007 48 9587 83 12747 118 16073 153 18675

14 4040 49 9825 84 12812 119 16100 154 18709

15 4336 50 9860 85 13011 120 16222 155 18718

16 4932 51 9928 86 13349 121 16431 156 18797

17 5071 52 9976 87 13482 122 16460 157 18813

18 5100 53 9981 88 13531 123 16496 158 18825

19 5391 54 9988 89 13588 124 16671 159 18881

20 5550 55 10179 90 13841 125 16729 160 18907

21 5752 56 10370 91 13980 126 16779 161 18947

22 5848 57 10467 92 13997 127 16794 162 19021

23 5859 58 10573 93 14095 128 16846 163 19066

24 6027 59 10723 94 14096 129 16923 164 19076

25 6055 60 10778 95 14105 130 17017 165 19157

26 6275 61 10853 96 14262 131 17055 166 19179

27 6496 62 11333 97 14419 132 17101 167 19285

28 6538 63 11359 98 14474 133 17150 168 19347

29 6557 64 11437 99 14530 134 17200 169 19348

30 6563 65 11452 100 14661 135 17359 170 19375

31 6800 66 11535 101 14796 136 17452 171 19474

32 7319 67 11553 102 14860 137 17603 172 19474

33 7567 68 11553 103 15089 138 17841 173 19555

34 7865 69 11609 104 15093 139 17870

35 8016 70 11904 105 15156 140 17945

https://doi.org/10.1371/journal.pone.0287427.t003
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Table 5. Architecture selection results of the ANN model for different training sets with maximum five input

nodes.

Training set observation period The nubmer of inputs The number of hidden nodes

1966-2003 4 4

1966-2004 4 5

1966-2005 4 5

1966-2006 4 5

1966-2007 4 5

1966-2008 4 5

1966-2009 3 4

1966-2010 4 5

1966-2011 4 5

1966-2012 4 4

1966-2013 3 3

1966-2014 4 4

https://doi.org/10.1371/journal.pone.0287427.t005

Table 6. Architecture selection results of the ANN model for different training sets with maximum seven input

nodes.

Training set observation period The number of inputs The number of hidden nodes

1966-2003 6 7

1966-2004 4 7

1966-2005 6 7

1966-2006 9 7

1966-2007 8 7

1966-2008 6 7

1966-2009 8 7

1966-2010 5 7

1966-2011 5 7

1966-2012 5 6

1966-2013 4 7

1966-2014 9 7

https://doi.org/10.1371/journal.pone.0287427.t006

Table 4. Architecture selection results of the ANN model for different training sets with maximum three input

nodes.

Training set observation period The nubmer of inputs The number of hidden nodes

1966-2003 1 3

1966-2004 3 3

1966-2005 2 3

1966-2006 4 2

1966-2007 3 3

1966-2008 2 3

1966-2009 2 3

1966-2010 4 3

1966-2011 3 3

1966-2012 3 3

1966-2013 1 3

1966-2014 1 3

https://doi.org/10.1371/journal.pone.0287427.t004
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